Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Nucleic Acids Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709879

RESUMO

Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inefficient and labor-intensive, limiting transferability into clinical applications. Here, we present 'Imputation Server PGS', an extension of the Michigan Imputation Server designed to automate a standardized calculation of polygenic scores based on imputed genotypes. This extends the widely used Michigan Imputation Server with new functionality, bringing the simplicity and efficiency of modern imputation to the PGS field. The service currently supports over 4489 published polygenic scores from publicly available repositories and provides extensive quality control, including ancestry estimation to report population stratification. An interactive report empowers users to screen and compare thousands of scores in a fast and intuitive way. Imputation Server PGS provides a user-friendly web service, facilitating the application of polygenic scores to a wide range of genetic studies and is freely available at https://imputationserver.sph.umich.edu.

2.
Front Genet ; 14: 1235337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028628

RESUMO

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

3.
Nat Genet ; 55(10): 1651-1664, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37770635

RESUMO

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Aterosclerose/genética , População Negra/genética , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , População Europeia/genética
4.
Anesthesiology ; 139(6): 827-839, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774411

RESUMO

BACKGROUND: Postsurgical pain is a key component of surgical recovery. However, the genetic drivers of postsurgical pain remain unclear. A broad review and meta-analyses of variants of interest will help investigators understand the potential effects of genetic variation. METHODS: This article is a systematic review of genetic variants associated with postsurgical pain in humans, assessing association with postsurgical pain scores and opioid use in both acute (0 to 48 h postoperatively) and chronic (at least 3 months postoperatively) settings. PubMed, Embase, and the Cochrane Central Register of Controlled Trials were searched from 2000 to 2022 for studies using search terms related to genetic variants and postsurgical pain in humans. English-language studies in adult patients examining associations of one or more genetic variants with postsurgical pain were included. The primary outcome was association of genetic variants with either acute or chronic postsurgical pain. Pain was measured by patient-reported pain score or analgesic or opioid consumption. RESULTS: A total of 163 studies were included, evaluating 129 unique genes and 594 unique genetic variants. Many of the reported significant associations fail to be replicated in other studies. Meta-analyses were performed for seven variants for which there was sufficient data (OPRM1 rs1799971; COMT rs4680, rs4818, rs4633, and rs6269; and ABCB1 rs1045642 and rs2032582). Only two variants were associated with small differences in postsurgical pain: OPRM1 rs1799971 (for acute postsurgical opioid use standard mean difference = 0.25; 95% CI, 0.16 to 0.35; cohort size, 8,227; acute postsurgical pain score standard mean difference = 0.20; 95% CI, 0.09 to 0.31; cohort size, 4,619) and COMT rs4680 (chronic postsurgical pain score standard mean difference = 0.26; 95% CI, 0.08 to 0.44; cohort size, 1,726). CONCLUSIONS: Despite much published data, only two alleles have a small association with postsurgical pain. Small sample sizes, potential confounding variables, and inconsistent findings underscore the need to examine larger cohorts with consistent outcome measures.


Assuntos
Analgésicos Opioides , Polimorfismo de Nucleotídeo Único , Adulto , Humanos , Dor Pós-Operatória/genética , Analgésicos
5.
Nat Genet ; 55(10): 1640-1650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estudo de Associação Genômica Ampla , Cirrose Hepática/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Fosfolipases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
6.
Nat Commun ; 14(1): 4646, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532724

RESUMO

Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.


Assuntos
Fibrilação Atrial , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Fatores de Risco , Frequência Cardíaca/genética , Predisposição Genética para Doença , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
7.
Nat Protoc ; 18(9): 2625-2641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495751

RESUMO

The human leukocyte antigen (HLA) locus is associated with more complex diseases than any other locus in the human genome. In many diseases, HLA explains more heritability than all other known loci combined. In silico HLA imputation methods enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and in human immunodeficiency virus infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine mapping. Here, we present a comprehensive tutorial to impute HLA alleles from genotype data. We provide detailed guidance on performing standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids either locally or using the web-based Michigan Imputation Server, which hosts a multi-ancestry HLA imputation reference panel. We also offer best practice recommendations to conduct association tests to define the alleles, amino acids, and haplotypes that affect human traits. Along with the pipeline, we provide a step-by-step online guide with scripts and available software ( https://github.com/immunogenomics/HLA_analyses_tutorial ). This tutorial will be broadly applicable to large-scale genotyping data and will contribute to defining the role of HLA in human diseases across global populations.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Humanos , Alelos , Antígenos HLA/genética , Genótipo , Haplótipos , Aminoácidos/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
8.
Res Sq ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778386

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hematologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

9.
Diabetes ; 72(5): 653-665, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791419

RESUMO

Few studies have demonstrated reproducible gene-diet interactions (GDIs) impacting metabolic disease risk factors, likely due in part to measurement error in dietary intake estimation and insufficient capture of rare genetic variation. We aimed to identify GDIs across the genetic frequency spectrum impacting the macronutrient-glycemia relationship in genetically and culturally diverse cohorts. We analyzed 33,187 participants free of diabetes from 10 National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program cohorts with whole-genome sequencing, self-reported diet, and glycemic trait data. We fit cohort-specific, multivariable-adjusted linear mixed models for the effect of diet, modeled as an isocaloric substitution of carbohydrate for fat, and its interactions with common and rare variants genome-wide. In main effect meta-analyses, participants consuming more carbohydrate had modestly lower glycemic trait values (e.g., for glycated hemoglobin [HbA1c], -0.013% HbA1c/250 kcal substitution). In GDI meta-analyses, a common African ancestry-enriched variant (rs79762542) reached study-wide significance and replicated in the UK Biobank cohort, indicating a negative carbohydrate-HbA1c association among major allele homozygotes only. Simulations revealed that >150,000 samples may be necessary to identify similar macronutrient GDIs under realistic assumptions about effect size and measurement error. These results generate hypotheses for further exploration of modifiable metabolic disease risk in additional cohorts with African ancestry. ARTICLE HIGHLIGHTS: We aimed to identify genetic modifiers of the dietary macronutrient-glycemia relationship using whole-genome sequence data from 10 Trans-Omics for Precision Medicine program cohorts. Substitution models indicated a modest reduction in glycemia associated with an increase in dietary carbohydrate at the expense of fat. Genome-wide interaction analysis identified one African ancestry-enriched variant near the FRAS1 gene that may interact with macronutrient intake to influence hemoglobin A1c. Simulation-based power calculations accounting for measurement error suggested that substantially larger sample sizes may be necessary to discover further gene-macronutrient interactions.


Assuntos
Diabetes Mellitus , Dieta , Humanos , Hemoglobinas Glicadas/genética , Diabetes Mellitus/genética , Ingestão de Alimentos , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Estudo de Associação Genômica Ampla
10.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747810

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

11.
Genome Biol ; 24(1): 31, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810122

RESUMO

The current version of the human reference genome, GRCh38, contains a number of errors including 1.2 Mbp of falsely duplicated and 8.04 Mbp of collapsed regions. These errors impact the variant calling of 33 protein-coding genes, including 12 with medical relevance. Here, we present FixItFelix, an efficient remapping approach, together with a modified version of the GRCh38 reference genome that improves the subsequent analysis across these genes within minutes for an existing alignment file while maintaining the same coordinates. We showcase these improvements over multi-ethnic control samples, demonstrating improvements for population variant calling as well as eQTL studies.


Assuntos
Genoma Humano , Genômica , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
12.
HGG Adv ; 4(1): 100163, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36568030

RESUMO

Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.


Assuntos
Exoma , Estudo de Associação Genômica Ampla , Humanos , Exoma/genética , Índice de Massa Corporal , Locos de Características Quantitativas/genética , Antropometria , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Ciclo Celular
13.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36255742

RESUMO

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Asma/genética , Loci Gênicos , Sequenciamento Completo do Genoma , Polimorfismo de Nucleotídeo Único/genética , Fatores de Crescimento de Fibroblastos/genética
14.
Front Genet ; 14: 1278215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162683

RESUMO

Introduction: Apparent treatment-resistant hypertension (aTRH) is characterized by the use of four or more antihypertensive (AHT) classes to achieve blood pressure (BP) control. In the current study, we conducted single-variant and gene-based analyses of aTRH among individuals from 12 Trans-Omics for Precision Medicine cohorts with whole-genome sequencing data. Methods: Cases were defined as individuals treated for hypertension (HTN) taking three different AHT classes, with average systolic BP ≥ 140 or diastolic BP ≥ 90 mmHg, or four or more medications regardless of BP (n = 1,705). A normotensive control group was defined as individuals with BP < 140/90 mmHg (n = 22,079), not on AHT medication. A second control group comprised individuals who were treatment responsive on one AHT medication with BP < 140/ 90 mmHg (n = 5,424). Logistic regression with kinship adjustment using the Scalable and Accurate Implementation of Generalized mixed models (SAIGE) was performed, adjusting for age, sex, and genetic ancestry. We assessed variants using SKAT-O in rare-variant analyses. Single-variant and gene-based tests were conducted in a pooled multi-ethnicity stratum, as well as self-reported ethnic/racial strata (European and African American). Results: One variant in the known HTN locus, KCNK3, was a top finding in the multi-ethnic analysis (p = 8.23E-07) for the normotensive control group [rs12476527, odds ratio (95% confidence interval) = 0.80 (0.74-0.88)]. This variant was replicated in the Vanderbilt University Medical Center's DNA repository data. Aggregate gene-based signals included the genes AGTPBP, MYL4, PDCD4, BBS9, ERG, and IER3. Discussion: Additional work validating these loci in larger, more diverse populations, is warranted to determine whether these regions influence the pathobiology of aTRH.

15.
Nat Commun ; 13(1): 7592, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481753

RESUMO

Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression.


Assuntos
Células Sanguíneas , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento Completo do Genoma
16.
Commun Biol ; 5(1): 806, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953715

RESUMO

Genome-wide association studies (GWAS) have made impactful discoveries for complex diseases, often by amassing very large sample sizes. Yet, GWAS of many diseases remain underpowered, especially for non-European ancestries. One cost-effective approach to increase sample size is to combine existing cohorts, which may have limited sample size or be case-only, with public controls, but this approach is limited by the need for a large overlap in variants across genotyping arrays and the scarcity of non-European controls. We developed and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining genotypes from arrays and whole-genome sequencing, ensuring complete variant overlap, and allowing for diverse samples like Trans-Omics for Precision Medicine to be used. Our protocol involves phasing, imputation, and filtering. We illustrated its ability to control technology driven artifacts and type-I error, as well as recover known disease-associated signals across technologies, independent datasets, and ancestries in smoking-related cohorts. GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample size and enhance discovery for understudied traits and ancestries.


Assuntos
Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Tamanho da Amostra , Sequenciamento Completo do Genoma/métodos
17.
Am J Hum Genet ; 109(9): 1653-1666, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981533

RESUMO

Understanding the genetic basis of human diseases and traits is dependent on the identification and accurate genotyping of genetic variants. Deep whole-genome sequencing (WGS), the gold standard technology for SNP and indel identification and genotyping, remains very expensive for most large studies. Here, we quantify the extent to which array genotyping followed by genotype imputation can approximate WGS in studies of individuals of African, Hispanic/Latino, and European ancestry in the US and of Finnish ancestry in Finland (a population isolate). For each study, we performed genotype imputation by using the genetic variants present on the Illumina Core, OmniExpress, MEGA, and Omni 2.5M arrays with the 1000G, HRC, and TOPMed imputation reference panels. Using the Omni 2.5M array and the TOPMed panel, ≥90% of bi-allelic single-nucleotide variants (SNVs) are well imputed (r2 > 0.8) down to minor-allele frequencies (MAFs) of 0.14% in African, 0.11% in Hispanic/Latino, 0.35% in European, and 0.85% in Finnish ancestries. There was little difference in TOPMed-based imputation quality among the arrays with >700k variants. Individual-level imputation quality varied widely between and within the three US studies. Imputation quality also varied across genomic regions, producing regions where even common (MAF > 5%) variants were consistently not well imputed across ancestries. The extent to which array genotyping and imputation can approximate WGS therefore depends on reference panel, genotype array, sample ancestry, and genomic location. Imputation quality by variant or genomic region can be queried with our new tool, RsqBrowser, now deployed on the Michigan Imputation Server.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
18.
HGG Adv ; 3(3): 100117, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35647563

RESUMO

CFTR F508del (c.1521_1523delCTT, p.Phe508delPhe) is the most common pathogenic allele underlying cystic fibrosis (CF), and its frequency varies in a geographic cline across Europe. We hypothesized that genetic variation associated with this cline is overrepresented in a large cohort (N > 5,000) of persons with CF who underwent whole-genome sequencing and that this pattern could result in spurious associations between variants correlated with both the F508del genotype and CF-related outcomes. Using principal-component (PC) analyses, we showed that variation in the CFTR region disproportionately contributes to a PC explaining a relatively high proportion of genetic variance. Variation near CFTR was correlated with population structure among persons with CF, and this correlation was driven by a subset of the sample inferred to have European ancestry. We performed genome-wide association studies comparing persons with CF with one versus two copies of the F508del allele; this allowed us to identify genetic variation associated with the F508del allele and to determine that standard PC-adjustment strategies eliminated the significant association signals. Our results suggest that PC adjustment can adequately prevent spurious associations between genetic variants and CF-related traits and are therefore effective tools to control for population structure even when population structure is confounded with disease severity and a common pathogenic variant.

19.
Commun Biol ; 5(1): 580, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697829

RESUMO

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Creatinina , Nefropatias Diabéticas/genética , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/genética , Humanos , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA